Dibenzocyclooctadiene Lignans with Antineurodegenerative Potential from Kadsura ananosma

Jian-Hong Yang, ${ }^{\dagger, \mp}$ Hai-Yan Zhang, ${ }^{\S}$ Jin Wen, ${ }^{\text {, }}$ Xue Du, ${ }^{+}$Jian-Hua Chen, ${ }^{\perp}$ Hai-Bo Zhang, ${ }^{+}$ Wei-Lie Xiao, ${ }^{+}$Jian-Xin Pu, ${ }^{*+}$ Xi-Can Tang, ${ }^{\$}$ and Han-Dong Sun ${ }^{*,+}$
${ }^{\dagger}$ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People’s Republic of China
${ }^{\text {§ }}$ State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
"Yunnan Academy of Forest Sciences Institute of Tropical Forestry, Kunming 650204, People's Republic of China
${ }^{\perp}$ Yunnan Academy of Tobacco Science, Kunming 650106, People's Republic of China
${ }^{\ddagger}$ Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China

(S) Supporting Information

ABSTRACT: Fourteen new dibenzocyclooctadiene lignans, ananolignans A-N $(\mathbf{1 - 1 4})$, together with five known compounds, were isolated from the seeds of Kadsura ananosma. The structures and absolute configurations of $\mathbf{1 - 1 4}$ were established using a combination of spectroscopic methods including 1D- and 2D-NMR and CD techniques. The biological activity of the isolated lignans was evaluated, and ananolignan F (6) and ananolignan $L(12)$ showed significant neuroprotective effects in an in vitro assay.

2

TThe economically and medicinally important family Schisandraceae contains two genera, Schisandra and Kadsura. Phytochemical and biological studies have shown that plants in this

	R_{1}	R_{2}	R_{3}
$\mathbf{1}$	H	$\alpha \mathrm{OAc}$	$\alpha \mathrm{CH}_{3}$
2	$=\mathrm{O}$	$\beta \mathrm{OAc}$	$\beta \mathrm{CH}_{3}$

19

	R_{1}	R_{2}
3	$\alpha \mathrm{OH}$	H
4	$\alpha \mathrm{OH}$	Ac
5	$\beta \mathrm{OAc}$	H
$\mathbf{6}$	$\beta \mathrm{OAc}$	Ac
7	$\beta \mathrm{AAc}$	Prop
8	$\beta \mathrm{OAc}$	Isobut
9	$\beta \mathrm{OAc}$	But
10	$\beta \mathrm{OAc}$	Isoval
11	$\beta \mathrm{OAc}$	Bz
12	$\beta \mathrm{OTig}$	Ac
13	$\beta \mathrm{OAng}$	Isobut
14	$\beta \mathrm{OAng}$	But
15	H	H
16	H	Ac
17	$\beta \mathrm{OTig}$	H
18	$\beta \mathrm{OAng}$	Ac

family are sources of dibenzocyclooctadiene lignans, ${ }^{1-4}$ which possess various effects such as antitumor, ${ }^{5}$ anti-HIV, ${ }^{6,7}$ and cytotoxic ${ }^{8}$ bioactivities. Kadsura ananosma Kerr is a liana indigenous to Yunnan Province, People's Republic of China. ${ }^{9}$ Previous work has led to the isolation of triterpenoids, sesquiterpenoids, and lignans from the stems of this plant. ${ }^{10-16}$ In the present study, the seeds of K. ananosma were studied for the first time. As a result, 19 dibenzocyclooctadiene lignans were isolated including 14 new compounds, ananolignans A-N (1-14), along with five known analogues. The structures of these new compounds were established by detailed analysis of their spectroscopic data, especially the 2DNMR and CD spectra. Our group has initiated a program to discover secondary metabolites with antineurodegenerative activity from plants. In this paper, the isolation and structure elucidation of compounds 1-14 and the antineurodegenerative activity in an in vitro assay of 19 dibenzocyclooctadiene lignans are reported.

■ RESULTS AND DISCUSSION

A 70\% aqueous acetone extract of the seeds of K. ananosma was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The EtOAc layer was subjected repeatedly to column chromatography and HPLC to

[^0]Table 1. ${ }^{1} \mathrm{H}$ NMR Data of $1-7$ in $\mathrm{CDCl}_{3}, \delta$ in $\mathrm{ppm}(J$ in Hz)

position	1^{a}	$2^{\text {b }}$	3^{b}	4^{a}	5^{a}	6^{a}	$7^{\text {b }}$
4	6.51 (s)	7.70 (s)	7.06 (s)	7.01 (s)	6.74 (s)	6.68 (s)	6.66 (s)
6α	2.04 (m)		4.76 (d, 1.7)	4.75 (s)	5.66 (d, 7.1)	5.70 (d, 8.5)	5.68 (d, 8.5)
6β	2.19 (m)						
7	2.02 (overlap)	3.10 (m)	2.19 (m)	2.15 (overlap)	1.96 (m)	2.01 (m)	2.01 (m)
8	2.01 (overlap)	2.02 (m)	2.08 (m)	2.14 (overlap)	2.07 (m)	2.12 (m)	2.12 (m)
9	5.46 (s)	5.66 (d, 5.0)	4.61 (s)	5.59 (s)	4.65 (d, 4.6)	5.74 (d, 4.6)	5.74 (d, 4.7)
11	6.70 (s)	6.51 (s)	6.33 (s)	6.44 (s)	6.32 (s)	6.44 (s)	6.51 (s)
17	1.02 (d, 6.6)	1.03 (d, 6.7)	0.94 (d, 7.4)	0.89 (d, 6.7)	0.92 (d, 7.9)	0.90 (d, 7.0)	0.94 (d, 7.1)
18	0.96 (d, 6.6)	0.87 (d, 7.2)	1.22 (d, 7.2)	0.98 (d, 6.6)	1.04 (d, 7.9)	0.96 (d, 6.8)	0.98 (d, 7.3)
2^{\prime}							1.80 (overlap)
3^{\prime}							0.83 (t, 7.6)
4^{\prime}							
AcO-6					1.81 (s)	1.78 (s)	1.74 (s)
AcO-9	2.02 (s)	1.40 (s)		1.57 (s)		1.57 (s)	
$\mathrm{CH}_{3} \mathrm{O}-1$	3.61 (s)	3.37 (s)	3.69 (s)	3.64 (s)	3.63 (s)	3.58 (s)	3.54 (s)
$\mathrm{CH}_{3} \mathrm{O}-2$	3.89 (s)	3.96 (s)	3.94 (s)	3.88 (s)	3.89 (s)	3.88 (s)	3.86 (s)
$\mathrm{CH}_{3} \mathrm{O}-3$	3.89 (s)	3.96 (s)	3.94 (s)	3.93 (s)	3.89 (s)	3.88 (s)	3.89 (s)
$\mathrm{CH}_{3} \mathrm{O}-14$	3.85 (s)	3.90 (s)	3.89 (s)	3.84 (s)	3.86 (s)	3.85 (s)	3.84 (s)
$\mathrm{OCH}_{2} \mathrm{O}$	6.00 (d, 0.8)	6.05 (s)	6.00 (s)	5.97 (s)	5.99 (s)	5.99 (s)	5.96 (s)
	5.98 (d, 0.8)	6.04 (s)	5.99 (s)	5.96 (s)		5.97 (s)	5.94 (s)
${ }^{\text {a }}$ Recorded at $500 \mathrm{MHz} .{ }^{b}$ Recorded at 400 MHz .							

$\mathrm{HMBC}: \mathrm{C} \sim \mathrm{ROESY}: \mathrm{C}$
Figure 1. Key HMBC and ROESY correlations of 1.
afford 14 new dibenzocyclooctadiene lignans, ananolignans A- $N(\mathbf{1 - 1 4})$, together with five known compounds, isogomisin $\mathrm{O}(\mathbf{1 5}),{ }^{17}$ kadsurin (16), ${ }^{18}$ ananosin $\mathrm{A}(\mathbf{1 7}),{ }^{19}$ interiotherin C (18), ${ }^{5}$ and yunnankadsurin B (19). ${ }^{20}$

Ananolignan A (1) was assigned a molecular formula of $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{8}$, according to its HRESIMS ($\mathrm{m} / \mathrm{z} 481.1841$ [$\mathrm{M}+$ $\mathrm{Na}]^{+}$) and NMR spectroscopic data. The UV data, with absorption maxima at $\lambda_{\text {max }} 213$ and 241 nm , and its IR spectrum, with absorption bands at 1622 and $1463 \mathrm{~cm}^{-1}$ (aromatic moiety), were consistent with $\mathbf{1}$ being a dibenzocyclooctadiene lignan. ${ }^{21,22}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ (Table 1) exhibited two aromatic singlets for a biphenyl moiety at $\delta_{\mathrm{H}} 6.51(\mathrm{H}-4)$ and $6.70(\mathrm{H}-11)$, four singlets for methoxy groups at $\delta_{\mathrm{H}} 3.89(6 \mathrm{H}), 3.85(3 \mathrm{H})$, and $3.61(3 \mathrm{H})$, and two singlets characteristic of a methylenedioxy group at $\delta_{\mathrm{H}} 6.00(\mathrm{~d}, J=0.8 \mathrm{~Hz})$ and $5.98(\mathrm{~d}, J=0.8 \mathrm{~Hz})$. A cyclooctadiene ring was recognized from two secondary methyl doublets at $\delta_{\mathrm{H}} 1.02\left(\mathrm{H}_{3}-17\right)$ and $0.96\left(\mathrm{H}_{3}-18\right)$, two methines at $\delta_{\mathrm{H}} 2.02(\mathrm{H}-7)$ and $2.01(\mathrm{H}-8)$, an oxymethine at $\delta_{\mathrm{H}} 5.46(\mathrm{H}-9)$, and a methylene at $\delta_{\mathrm{H}} 2.19$ and $2.04\left(\mathrm{H}_{2}-6\right)$. This was confirmed by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations of $\mathrm{H}-6 / \mathrm{H}-7 / \mathrm{H}-8 / \mathrm{H}-9, \mathrm{H}-7 / \mathrm{H}-$ 17, and H-8/H-18 (Figure 1). A careful analysis of the 2D NMR
spectroscopic data of $\mathbf{1}$ and comparison with kadsurin ${ }^{23}$ led to the conclusion that these two compounds possess the same planar structure. HMBC correlations of the methylenedioxy protons with C-12 and C-13 and of the four methoxy group signals with C-1, C-2, C-3, and C-14 showed that the methylenedioxy group is connected to $\mathrm{C}-12$ and $\mathrm{C}-13$, and the four methoxy groups are located at C-1, C-2, C-3, and C-14, respectively. The presence of an acetyl group at $\mathrm{C}-9$ was deduced from the HMBC correlation of $\mathrm{H}-9\left(\delta_{\mathrm{H}} 5.46\right)$ with the acetate carbonyl ($\delta_{\mathrm{C}} 170.0$) (Figure 1).

The CD spectrum of $\mathbf{1}$ exhibited a positive Cotton effect at $\lambda_{\text {max }} 250 \mathrm{~nm}$ and a negative value at $\lambda_{\text {max }} 210 \mathrm{~nm}$, indicating an R biphenyl configuration rather than an S-biphenyl configuration, as in kadsurin. ${ }^{23}$ With the axial chirality defined, a ROESY experiment was used to establish the absolute configuration of the remaining stereocenters in $\mathbf{1}$. The observed ROESY correlations of $\mathrm{H}-11$ with $\mathrm{H}_{3}-18$, $\mathrm{H}-4$ with $\mathrm{H}-7$, and $\mathrm{H}_{3}-17$ with $\mathrm{H}_{3}-18$ indicated that $\mathrm{CH}_{3}-17$ and $\mathrm{CH}_{3}-18$ are both α-oriented. ${ }^{24} \mathrm{~A}$ characteristic singlet suggested that H-9 is β-oriented, the same as $\mathrm{H}-8$. These conclusions were consistent with $\mathbf{1}$ being a cyclooctadiene lignan with a twisted boat/chair conformation having C-7 (R), C-8 (R), and C-9 (R) (Figure 1) absolute configurations. Thus, the structure of 1 was established as shown, and this new compound has been named ananolignan A .

The molecular formula of ananolignan B (2) was assigned as $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{9}$, on the basis of the HRESIMS $(\mathrm{m} / z 495.1635$ [$\mathrm{M}+$ $\mathrm{Na}]^{+}$). The ${ }^{1} \mathrm{H}$ NMR spectrum showed evidence of 1 being a dibenzocyclooctadiene derivative. The CD curve of 2 exhibited a positive Cotton effect at $\lambda_{\text {max }} 240 \mathrm{~nm}$ and a negative value at $\lambda_{\text {max }}$ 210 nm , indicating an R-biphenyl configuration. Comparison of the NMR data of 2 with those of schisantherin Q^{25} disclosed that the only structural differences refer to the conformation of the biphenyl ring system and the substituent at $\mathrm{C}-9$. The HMBC correlations from $\mathrm{H}-9\left(\delta_{\mathrm{H}} 5.66\right)$ to C-7 $\left(\delta_{\mathrm{C}} 42.7, \mathrm{~d}\right)$,

C-8 ($\delta_{\mathrm{C}} 46.3, \mathrm{~d}$), C-10 ($\left.\delta_{\mathrm{C}} 132.2, \mathrm{~s}\right), \mathrm{C}-11\left(\delta_{\mathrm{C}} 101.6, \mathrm{~d}\right)$, and acetate carbonyl led to the positioning of an acetyl group at C-9. The configurations of $\mathrm{H}-8, \mathrm{H}-9$, and $\mathrm{CH}_{3}-17$ were deduced to be α-oriented on the basis of the ROESY correlations from $\mathrm{H}-11$ to $\mathrm{H}-8$ and $\mathrm{H}-9$ and from $\mathrm{H}_{3}-17$ to $\mathrm{H}-8$. Therefore, the structure of ananolignan $\mathrm{B}(2)$ was determined as shown.

Ananolignan C (3) was assigned as $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8}$, as deduced from the HRESIMS ($m / z 455.1683[\mathrm{M}+\mathrm{Na}]^{+}$) and in accordance with its NMR data. The UV, IR, and NMR spectra of 3 suggested the presence of a dibenzocyclooctadiene lignan with almost identical data to $\mathbf{1}$, indicating a similar substitution pattern in the biphenyl ring. However, the signals attributable to the substituents in the cyclooctadiene moiety were different. Thus, the signals of two oxymethines were assigned to C-6 and C-9, which was deduced from the HMBC correlations of H-9 $\left(\delta_{\mathrm{H}} 4.61\right)$ with $\mathrm{C}-11\left(\delta_{\mathrm{C}} 102.2, \mathrm{~d}\right)$ and $\mathrm{C}-18\left(\delta_{\mathrm{C}} 20.3, \mathrm{q}\right)$ and of H-6 ($\delta_{\mathrm{H}} 4.76$) with $\mathrm{C}-4\left(\delta_{\mathrm{C}} 106.4, \mathrm{~d}\right)$ and $\mathrm{C}-17\left(\delta_{\mathrm{C}} 9.8, \mathrm{q}\right)$

HMBC: $\mathrm{H} \frown \mathrm{C}$ ROESY: ${ }^{\circ}{ }^{\circ}$

Figure 2. Key HMBC and ROESY correlations of 3.
Table 2. ${ }^{1} \mathrm{H}$ NMR Data of $8-14$ in $\mathrm{CDCl}_{3}, \delta$ in $\mathrm{ppm}(J$ in Hz$)$

position	8^{b}	9^{b}	10^{b}	11^{a}	12^{a}	13^{b}	14^{b}
4	6.69 (s)	6.68 (s)	6.69 (s)	6.82 (s)	6.64 (s)	6.72 (s)	6.71 (s)
6	5.70 (d, 8.8)	5.68 (d, 8.6)	5.71 (d, 8.9)	5.86 (d, 8.6)	5.84 (d, 6.9)	5.83 (d, 8.0)	5.84 (d, 7.8)
7	2.02 (m)	2.02 (m)	2.00 (m)	2.15 (m)	2.18 (m)	2.12 (m)	2.11 (m)
8	2.15 (m)	2.14 (m)	2.18 (m)	2.29 (m)	2.22 (m)	2.22 (m)	2.21 (m)
9	5.78 (d, 5.1)	5.76 (d, 4.8)	5.78 (d, 4.7)	6.05 (d, 4.7)	5.70 (d, 1.7)	5.76 (br s)	5.76 (br s)
11	6.45 (s)	6.44 (s)	6.45 (s)	6.57 (s)	6.47 (s)	6.45 (s)	6.45 (s)
17	0.95 (d, 7.1)	0.90 (d, 8.8)	0.90 (d, 7.0)	1.01 (d, 7.0)	0.92 (d, 7.1)	0.95 (d, 7.1)	0.93 (d, 7.2)
18	1.00 (d, 7.1)	0.95 (d, 8.4)	0.95 (d, 6.9)	1.09 (d, 7.3)	1.05 (d, 6.8)	1.01 (d, br s)	1.02 (d, br s)
2^{\prime}	1.93 (m)	1.76 (m)	1.73 (m)				
3^{\prime}	0.85 (d, 7.1)	1.35 (m)	1.38, 1.23 (m)	7.34 (d, 7.3)	6.11 (br s)	5.97 (overlap)	5.97 (overlap)
4^{\prime}	0.88 (d, 7.1)	0.77 (t, 7.4)	0.73 (t, 7.4)	7.30 (t, 6.6)	1.66 (d, 7.1)	1.86 (d, 7.2)	1.85 (d, 5.9)
5^{\prime}			0.86 (d, 7.0)	7.44 (t, 7.3)	1.59 (s)	1.52 (s)	1.49 (s)
6^{\prime}				7.30 (t, 6.6)			
$7{ }^{\prime}$				7.34 (d, 7.3)			
$2^{\prime \prime}$						1.95 (m)	1.79 (m)
$3^{\prime \prime}$						0.88 (d, 6.5)	1.37 (m)
$4^{\prime \prime}$						0.87 (d, 6.5)	0.79 (t, 7.4)
AcO-6	1.80 (s)	1.57 (s)	1.80 (s)	1.60 (s)			
AcO-9					1.58 (s)		
$\mathrm{CH}_{3} \mathrm{O}-1$	3.59 (s)	3.56 (s)	3.61 (s)	3.11 (s)	3.58 (s)	3.59 (s)	3.56 (s)
$\mathrm{CH}_{3} \mathrm{O}-2$	3.87 (s)	3.88 (s)	3.88 (s)	3.83 (s)	3.85 (s)	3.86 (s)	3.88 (s)
$\mathrm{CH}_{3} \mathrm{O}-3$	3.88 (s)	3.88 (s)	3.88 (s)	3.97 (s)	3.88 (s)	3.90 (s)	3.90 (s)
$\mathrm{CH}_{3} \mathrm{O}-14$	3.84 (s)	3.84 (s)	3.84 (s)	3.50 (s)	3.72 (s)	3.77 (s)	3.77 (s)
$\mathrm{OCH}_{2} \mathrm{O}$	6.00 (s)	5.99 (s)	5.99 (s)	6.01 (s)	5.97 (s)	5.95 (s)	5.94 (s)
	5.99 (s)	5.96 (s)	5.97 (s)	5.98 (s)	5.91 (s)	5.93 (s)	
${ }^{\text {a }}$ Recorded at $400 \mathrm{MHz} .{ }^{b}$ Recorded at 500 MHz .							

[^1]Table 3. ${ }^{13} \mathrm{C}$ NMR Data of $1-7$ in $\mathrm{CDCl}_{3}, \delta$ in ppm

position	1^{a}	$2^{\text {b }}$	3^{a}	4^{a}	5^{a}	6^{b}	7^{a}
1	152.0 (s)	152.2 (s)	151.1 (s)	150.3 (s)	152.8 (s)	151.9 (s)	151.8 (s)
2	140.5 (s)	145.7 (s)	140.8 (s)	140.1 (s)	142.0 (s)	141.4 (s)	141.3 (s)
3	153.8 (s)	152.2 (s)	153.0 (s)	152.1 (s)	152.2 (s)	151.5 (s)	151.5 (s)
4	107.8 (d)	107.8 (d)	106.4 (d)	105.8 (d)	111.2 (d)	110.6 (d)	110.5 (d)
5	139.3 (s)	131.9 (s)	135.4 (s)	135.5 (s)	131.0 (s)	131.2 (s)	131.1 (s)
6	35.2 (t)	200.4 (s)	72.6 (d)	72.8 (d)	81.0 (d)	80.9 (d)	80.9 (d)
7	39.2 (d)	42.7 (d)	43.6 (d)	43.4 (d)	38.3 (d)	38.0 (d)	37.9 (d)
8	41.0 (d)	46.3 (d)	41.6 (d)	40.6 (d)	41.5 (d)	39.8 (d)	39.1 (d)
9	76.4 (d)	79.3 (d)	83.8 (d)	82.1 (d)	80.4 (d)	79.6 (d)	79.8 (d)
10	132.0 (s)	132.2 (s)	138.6 (s)	135.2 (s)	133.5 (s)	132.9 (s)	133.0 (s)
11	102.1 (d)	101.6 (d)	102.2 (d)	102.2 (d)	102.0 (d)	102.3 (d)	102.3 (d)
12	148.7 (s)	149.5 (s)	149.0 (s)	149.0 (s)	148.8 (s)	148.6 (s)	148.5 (s)
13	136.0 (s)	136.5 (s)	135.3 (s)	135.8 (s)	136.9 (s)	136.2 (s)	136.1 (s)
14	141.3 (s)	142.2 (s)	141.0 (s)	141.0 (s)	142.5 (s)	141.8 (s)	141.7 (s)
15	121.4 (s)	120.0 (s)	117.5 (s)	118.6 (s)	119.7 (s)	121.4 (s)	121.3 (s)
16	120.9 (s)	125.7 (s)	119.7 (s)	121.1 (s)	122.5 (s)	123.3 (s)	123.0 (s)
17	21.8 (q)	15.5 (q)	9.8 (q)	9.4 (q)	17.4 (q)	16.7 (q)	17.7 (q)
18	9.0 (q)	10.4 (q)	20.3 (q)	20.0 (q)	17.4 (q)	16.8 (q)	18.1 (q)
1^{\prime}							173.5 (s)
2^{\prime}							27.1 (t)
3^{\prime}							8.6 (q)
4^{\prime}							
AcO-6					170.2 (s)	170.1 (s)	170.1 (s)
					21.0 (q)	20.9 (q)	20.9 (q)
AcO-9	170.0 (s)	169.8 (s)		169.9 (s)		170.0 (s)	
	22.3 (q)	20.1 (q)		20.6 (q)		20.6 (q)	
$\mathrm{CH}_{3} \mathrm{O}-1$	61.3 (q)	59.9 (q)	60.6 (q)	60.3 (q)	60.4 (q)	60.1 (q)	60.1 (q)
$\mathrm{CH}_{3} \mathrm{O}-2$	61.4 (q)	60.9 (q)	61.0 (q)	60.6 (q)	60.8 (q)	60.6 (q)	60.5 (q)
$\mathrm{CH}_{3} \mathrm{O}-3$	56.3 (q)	55.9 (q)	55.9 (q)	55.9 (q)	55.9 (q)	56.0 (q)	55.9 (q)
$\mathrm{CH}_{3} \mathrm{O}-14$	60.2 (q)	60.2 (q)	59.7 (q)	59.6 (q)	59.5 (q)	59.5 (q)	59.5 (q)
$\mathrm{OCH}_{2} \mathrm{O}$	101.4 (t)	101.4 (t)	101.2 (t)	101.2 (t)	101.1 (t)	101.2 (t)	101.1 (t)
${ }^{a}$ Recorded at $100 \mathrm{MHz} .{ }^{b}$ Recorded at 125 MHz .							

obtained for $4-6$ were shown from $\mathrm{H}-11$ to $\mathrm{H}-8$ and $\mathrm{H}-9$ and suggested that $\mathrm{CH}_{3}-18$ has an α-orientation, with $\mathrm{H}-9 \beta$ oriented. The ROESY correlations in 4 from $\mathrm{H}-4$ to $\mathrm{H}_{3}-17$, from $\mathrm{H}-6$ to $\mathrm{H}-8$, and from $\mathrm{H}_{3}-17$ to $\mathrm{H}_{3}-18$ indicated that HO-6 and $\mathrm{CH}_{3}-17$ adopt an α-orientation. In compounds 5 and $6, \mathrm{H}-6$ and $\mathrm{CH}_{3}-17$ were assigned as α-oriented, according to the ROESY correlations of $\mathrm{H}-4$ with $\mathrm{H}-6$ and $\mathrm{H}_{3}-17$. Thus, the structures of ananolignans $\mathrm{D}(4), \mathrm{E}(5)$, and $\mathrm{F}(6)$ were established as shown.

Ananolignans G (7) and H (8) were determined with the molecular formulas $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{10}$ and $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{10}$ by HRESIMS $\left(m / z 553.2060[\mathrm{M}+\mathrm{Na}]^{+}\right.$and $567.2201[\mathrm{M}+\mathrm{Na}]^{+}$, respectively). Comparison of the spectroscopic data of 7 with those of 6 revealed these substances to be quite similar structurally, except that the acetyl group at C-9 in 6 was changed to a propionyl group ($\delta_{\mathrm{C}} 173.5 \mathrm{~s}, 27.1 \mathrm{t}, 8.6 \mathrm{q}$) in 7 , which was confirmed by HMBC correlations from an oxymethine at δ_{H} 5.74 (H-9) to $\delta_{\mathrm{C}} 173.5$ (C-1'), 37.9 (C-7), 39.1 (C-8), 133.0 (C-10), and 102.3 (C-11). Compound 8 exhibited an isobutyryl group ($\delta_{\mathrm{C}} 176.4 \mathrm{~s}, 33.6 \mathrm{~d}, 19.3 \mathrm{q}$, and 17.9 q) at C-9, ${ }^{26}$ which was confirmed by the HMBC correlation of H-9 ($\delta_{\mathrm{H}} 5.78$) with the signal at δ_{C} 176.4. Ananolignans I (9), J (10), and K (11) showed molecular ions at $m / z 567.2221,581.2354$, and 601.2046 in their HRESIMS, corresponding to the molecular formulas
$\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{10}, \mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{10}$, and $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{10}$, respectively. The major differences were in the replacement of an acetyl group at C-9 in $\mathbf{6}$ by a butyryl group ($\delta_{\mathrm{C}} 172.7 \mathrm{~s}, 35.7 \mathrm{t}, 18.0 \mathrm{t}$, and 13.5 q) in 9 , by a isovaleryl group ($\delta_{\mathrm{C}} 176.0 \mathrm{~s}, 40.2 \mathrm{~d}, 26.6 \mathrm{t}, 11.1 \mathrm{q}$, and 15.0 q) in 10, and by a benzoyloxy group ($\delta_{\mathrm{C}} 165.7 \mathrm{~s}, 129.5 \mathrm{~s}, 129.5 \mathrm{~d}$, $128.1 \mathrm{~d}, 133.0 \mathrm{~d}, 128.1 \mathrm{~d}$, and 129.5 d) in $11 .^{26,27}$ The CD, UV, IR, and NMR spectra suggested that $7 \mathbf{- 1 1}$ are S-biphenylconfigured dibenzocyclooctadiene lignans. ROESY correlations of $\mathrm{H}-11$ with $\mathrm{H}-8$ and $\mathrm{H}-9$, of $\mathrm{H}-4$ with $\mathrm{H}-6$ and $\mathrm{H}_{3}-17$, and of $\mathrm{H}_{3}-18$ with $\mathrm{H}_{3}-17$ in $7-11$ suggested the absolute configurations as C-6 (R), C-7 (S), C-8 (R), and C-9 (R), which were identical with those of 6 . The H-6/H-7 and $\mathrm{H}-8 / \mathrm{H}-9$ coupling constants for 7-11 also confirmed the above deductions.

Ananolignan L(12) gave the molecular formula $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{10}$ from its HRESIMS data at $m / z 579.2221[\mathrm{M}+\mathrm{Na}]^{+}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, together with the CD, UV, and IR experiments conducted, suggested that $\mathbf{1 2}$ is an S-biphenylconfigured dibenzocyclooctadiene lignan. The HMBC correlations of $\mathrm{H}-9\left(\delta_{\mathrm{H}} 5.70\right)$ with the acetate carbonyl ($\delta_{\mathrm{C}} 170.0$), the methylenedioxy protons with $\mathrm{C}-12$ and $\mathrm{C}-13$, and the four methoxy groups with C-1, C-2, C-3, and C-14, respectively, indicated that the substitution patterns on C-9 and the carbons of the aromatic rings are the same as those of 6 . The ${ }^{13} \mathrm{C}$ NMR

Table 4. ${ }^{13} \mathrm{C}$ NMR Data of $8-14$ in $\mathrm{CDCl}_{3}, \delta$ in ppm

position	8^{a}	9^{a}	10^{b}	11^{a}	12^{a}	13^{b}	14^{a}
1	151.5 (s)	151.4 (s)	151.5 (s)	151.7 (s)	151.6 (s)	151.6 (s)	151.5 (s)
2	141.3 (s)	141.3 (s)	141.4 (s)	141.8 (s)	141.0 (s)	140.4 (s)	140.5(s)
3	151.9 (s)	151.8 (s)	152.0 (s)	152.1 (s)	151.6 (s)	151.9 (s)	151.7 (s)
4	110.5 (d)	110.5 (d)	110.6 (d)	110.5 (d)	110.0 (d)	110.5 (d)	110.3 (d)
5	131.1 (s)	131.1 (s)	131.1 (s)	131.0 (s)	131.2 (s)	131.2 (s)	131.2 (s)
6	81.0 (d)	80.9 (d)	81.0 (d)	80.9 (d)	80.7 (d)	80.7 (d)	80.6 (d)
7	37.8 (d)	37.8 (d)	37.8 (d)	39.1 (d)	38.9 (d)	38.6 (d)	38.5 (d)
8	37.8 (d)	37.8 (d)	37.8 (d)	39.9 (d)	38.3 (d)	39.7 (d)	38.5 (d)
9	79.5 (d)	79.8 (d)	79.4 (d)	80.4 (d)	80.9 (d)	80.3 (d)	80.6 (d)
10	132.9 (s)	132.9 (s)	133.1 (s)	132.7 (s)	133.4 (s)	133.2 (s)	133.1 (s)
11	102.5 (d)	102.3 (d)	102.5 (d)	102.6 (d)	102.3 (d)	102.5 (d)	102.3 (d)
12	148.5 (s)	148.5 (s)	148.6 (s)	148.6 (s)	148.4 (s)	148.6 (s)	148.5 (s)
13	136.1 (s)	136.2 (s)	136.2 (s)	136.4 (s)	135.9 (s)	135.9 (s)	135.9 (s)
14	141.7 (s)	141.7 (s)	141.8 (s)	141.8 (s)	141.3 (s)	143.0 (s)	141.2 (s)
15	121.4 (s)	121.4 (s)	121.6 (s)	121.4 (s)	121.3 (s)	121.3 (s)	121.1 (s)
16	123.0 (s)	123.2 (s)	122.4 (s)	123.5 (s)	122.5 (s)	123.4 (s)	124.3 (s)
17	16.5 (q)	15.6 (q)	17.6 (q)	16.7 (q)	15.8 (q)	19.9 (q)	19.9 (q)
18	16.7 (q)	18.8 (q)	17.6 (q)	16.7 (q)	15.8 (q)	19.3 (q)	19.9 (q)
1^{\prime}	176.4 (s)	172.7 (s)	176.0 (s)	165.7 (s)	166.8 (s)	166.8 (s)	166.7 (s)
2^{\prime}	33.6 (d)	35.7 (t)	40.2 (d)	129.5 (s)	128.2 (s)	127.8 (s)	127.7 (s)
3^{\prime}	17.9 (q)	18.0 (t)	26.6 (t)	129.5 (d)	137.2 (d)	138.3 (d)	138.6 (d)
4^{\prime}	19.3 (q)	13.5 (q)	11.1 (q)	128.1 (d)	14.2 (q)	15.5 (q)	15.6 (q)
5^{\prime}			15.0 (q)	133.0 (d)	11.6 (q)	20.4 (q)	19.9 (q)
6^{\prime}				128.1 (d)			
7^{\prime}				129.5 (d)			
$1^{\prime \prime}$						176.4 (s)	172.8 (s)
$2^{\prime \prime}$						33.6 (d)	35.8 (t)
$3^{\prime \prime}$						19.3 (q)	17.9 (t)
$4^{\prime \prime}$						18.0 (q)	13.6 (q)
AcO-6	170.1 (s)	170.1 (s)	170.1 (s)	170.2 (s)			
	21.0 (q)	20.9 (q)	21.0 (q)	21.0 (q)			
AcO-9					170.0 (s)		
					20.7 (q)		
$\mathrm{CH}_{3} \mathrm{O}-1$	60.2 (q)	60.1 (q)	59.7 (q)	59.6 (q)	60.3 (q)	60.3 (q)	60.2 (q)
$\mathrm{CH}_{3} \mathrm{O}-2$	60.4 (q)	60.5 (q)	60.5 (q)	59.7 (q)	60.5 (q)	60.4 (q)	60.5 (q)
$\mathrm{CH}_{3} \mathrm{O}-3$	55.9 (q)	55.9 (q)	55.9 (q)	56.0 (q)	55.9 (q)	56.0 (q)	55.9 (q)
$\mathrm{CH}_{3} \mathrm{O}-14$	59.5 (q)	59.4 (q)	59.4 (q)	60.1 (q)	59.2 (q)	59.2 (q)	59.3 (q)
$\mathrm{OCH}_{2} \mathrm{O}$	101.1 (t)	101.1 (t)	101.2 (t)	101.2 (t)	101.0 (t)	101.0 (t)	101.0 (t)
${ }^{\text {a }}$ Recorded at $100 \mathrm{MHz} .{ }^{b}$ Recorded at 125 MHz .							

signals at $\delta_{\mathrm{C}} 166.8 \mathrm{~s}, 128.2 \mathrm{~s}, 137.2 \mathrm{~d}, 14.2 \mathrm{q}$, and 11.6 q suggested the presence of a tigloyloxy moiety substituted at C-6, which was confirmed by analysis of the HSQC, HMBC , and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra. The configuration of 12 was determined through ROESY correlations of $\mathrm{H}-11 / \mathrm{H}-8, \mathrm{H}-9$; H-4/H-6, $\mathrm{H}_{3}-17$; and $\mathrm{H}_{3}-18 / \mathrm{H}_{3}-17$, as well as the proton coupling constants of H-6 (d, $J=6.9 \mathrm{~Hz})$ and $\mathrm{H}-9(\mathrm{~d}, J=1.7 \mathrm{~Hz})$, which were in agreement with a cyclooctadiene lignan with a twisted boat/chair conformation having C-6 (R), C-7 (S), C-8 (R), and C-9 (R) absolute configurations. Therefore, the structure of ananolignan L (12) was determined as shown.

Ananolignans M (13) and N (14) were assigned with the same molecular formula, $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{10}$, as determined by HRESIMS $\left(m / z 607.2526[\mathrm{M}+\mathrm{Na}]^{+}\right.$and $607.2522[\mathrm{M}+\mathrm{Na}]^{+}$, respectively $)$. Both compounds were assigned as S-biphenyl-configured
dibenzocyclooctadiene lignans by comparison of their CD, UV, and ROESY spectra with those of 8 . The main difference found between 8 and 13 concerned the substituent group located at C-6. Analysis of the 1D NMR data showed an angeloyloxy group ($\delta_{\mathrm{C}} 166.8 \mathrm{~s}, 127.8 \mathrm{~s}, 138.3 \mathrm{~d}, 15.5 \mathrm{q}$, and 20.4 q) in 13 instead of an acetyl group in 8, which was deduced from a HMBC correlation of $\mathrm{H}-6\left(\delta_{\mathrm{H}} 5.83\right)$ with $\mathrm{C}-1^{\prime}\left(\delta_{\mathrm{C}} 166.8\right)$. Comparison of the NMR data of $\mathbf{1 4}$ with those of 13 disclosed that the only structural difference was the isobutyryl group located at C-9 in 13 being changed into a butyryl moiety ($\delta_{\mathrm{C}} 172.8 \mathrm{~s}, 35.8 \mathrm{t}, 17.9 \mathrm{t}$, and 13.6 q) in $\mathbf{1 4}$. This was confirmed by the HMBC correlations from $\delta_{\mathrm{H}} 5.76(\mathrm{H}-9)$ to $\delta_{\mathrm{C}} 172.8\left(\mathrm{C}-1^{\prime \prime}\right)$. The configurations of $\mathrm{H}-6, \mathrm{CH}_{3}-17$, and $\mathrm{CH}_{3}-18$ were assigned as α-oriented, with $\mathrm{H}-9$ β-oriented, on the basis of the ROESY correlations from $\mathrm{H}-11$ to $\mathrm{H}-8$ and $\mathrm{H}-9$, from $\mathrm{H}-4$ to $\mathrm{H}-6$ and $\mathrm{H}_{3}-17$, and from $\mathrm{H}_{3}-17$ to

Table 5. Neuroprotective Effects of Compounds $1-19$ on SH-SY5Y Cells

$\mathrm{H}_{3}-18$. Accordingly, the structures of $\mathbf{1 3}$ and $\mathbf{1 4}$ were determined as shown.

The neuroprotective effects of all dibenzocyclooctadiene lignans were evaluated according to a reported in vitro protocol ${ }^{28}$ using SH-SY5Y neuroblastoma cells, a neuroblastoma cell line used for the study of neurodegenerative disease. ${ }^{29,30}$ As may be seen from Table 5, ananolignan F (6) and ananolignan L (12) showed the most promising cell survival data against oxidative stress-induced neurotoxicity, of all the compounds tested.

- EXPERIMENTAL SECTION

General Experimental Procedures. Optical rotations were measured with a Horiba SEPA-300 polarimeter. UV spectra were obtained using a Shimadzu UV-2401A spectrophotometer. A Tenor 27 spectrophotometer was used for scanning IR spectroscopy with KBr pellets. 1D and 2D NMR spectra were recorded on Bruker AM-400 and DRX-500 spectrometers with TMS as internal standard. Chemical shifts (δ) are expressed in ppm with reference to the solvent signals. Mass spectra were performed on an API QSTAR time-of-flight spectrometer and a VG Autospec-3000 spectrometer, respectively. Semipreparative HPLC was performed on an Agilent 1100 liquid chromatograph with a Zorbax SB-C18 ($9.4 \mathrm{~mm} \times 25 \mathrm{~cm}$) column. Column chromatography was performed with silica gel (200-300 mesh, Qingdao Marine Chemical, Inc., Qingdao, People's Republic of China) and MCI gel ($75-150 \mu \mathrm{M}$, Mitsubishi Chemical Corporation, Tokyo, Japan). Fractions were monitored by TLC, and spots were visualized by heating silica gel plates sprayed with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in EtOH.
Plant Material. The seeds of K. ananosma were collected in Simao Country of Yunnan Province, People's Republic of China, in October 2008, and identified by Prof. Xi-Wen Li, Kunming Institute of Botany. A voucher specimen (KIB 08102010) has been deposited in the Herbarium of the Kunming Institute of Botany, Chinese Academy of Sciences.

Extraction and Isolation. The air-dried and powdered seeds of K. ananosma $(250 \mathrm{~g})$ were extracted with 70% aqueous $\mathrm{Me}_{2} \mathrm{CO}(500 \mathrm{~mL} \times$ 3) at room temperature and concentrated in vacuo to yield a residue, which was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The EtOAc extract $(6.5 \mathrm{~g})$ was chromatographed on MCI CHP 20 P gel $\left(90 \% \mathrm{CH}_{3} \mathrm{OH}-\right.$ $\mathrm{H}_{2} \mathrm{O}$). The $90 \% \mathrm{CH}_{3} \mathrm{OH}$ fraction (5.0 g) was subjected to silica gel (200-300 mesh) column chromatography, eluting with a $\mathrm{CHCl}_{3}-$ $\mathrm{Me}_{2} \mathrm{CO}$ gradient system ($9: 1,8: 2,2: 1,1: 1,0: 1$), to afford fractions $1-5$. Fraction $2(3.5 \mathrm{~g})$ was chromatographed on a silica gel column ($\mathrm{CHCl}_{3}-\mathrm{Me}_{2} \mathrm{CO}, 50: 1-25: 1$) to give three subfractions (2.1-2.3). Fraction $2.1(1.5 \mathrm{~g})$ was purified by semipreparative HPLC (82%
$\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$) to get three fractions (2.1.1-2.1.3). Fraction 2.1.1 $(35 \mathrm{mg})$ was separated further by semipreparative HPLC (63% $\left.\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}\right)$ to give $2(2 \mathrm{mg})$. Fraction 2.1.2 $(350 \mathrm{mg})$ was purified by semipreparative HPLC ($65 \% \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$) to give $\mathbf{1}(14 \mathrm{mg}), \mathbf{6}$ $(39 \mathrm{mg})$, and $16(31 \mathrm{mg})$. Fraction $2.1 .3(650 \mathrm{mg})$ was purified repeatedly by semipreparative $\mathrm{HPLC}\left(65 \% \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}\right)$ to give 7 $(42 \mathrm{mg}), 8(27 \mathrm{mg}), 9(43 \mathrm{mg}), 10(9 \mathrm{mg}), 11(8 \mathrm{mg}), 12(27 \mathrm{mg}), 13$ $(42 \mathrm{mg}), \mathbf{1 4}(21 \mathrm{mg})$, and $\mathbf{1 8}(71 \mathrm{mg})$. Fraction $2.2(0.5 \mathrm{~g})$ was subjected to semipreparative HPLC $\left(62 \% \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}\right)$ to produce $4(31 \mathrm{mg})$, $5(4 \mathrm{mg}), \mathbf{1 5}(28 \mathrm{mg}), \mathbf{1 7}(3 \mathrm{mg})$, and $19(10 \mathrm{mg})$. Finally, fraction 2.3 (0.1 g) was separated by semipreparative HPLC $\left(60 \% \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}\right)$ to yield $3(9 \mathrm{mg})$.

Ananolignan A (1): white solid; $[\alpha]_{\mathrm{D}}^{26}+68.1\left(c 0.17, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }} \mathrm{nm}(\Delta \varepsilon) 210(-25), 250(+30) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}$ $(\log \varepsilon) 241$ (3.99), 230 (3.67), 226 (3.68), 219 (3.66), 213 (3.64), 208 (3.64), 199 (3.64) nm; IR (KBr) $v_{\text {max }} 2929,1738,1622,1463,1243 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 3; positive ESIMS $m / z 481$ (100) $[\mathrm{M}+\mathrm{Na}]^{+}$; positive HRESIMS $m / z 481.1841[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{Na}, 481.1838\right)$.

Ananolignan $B(\mathbf{2})$: white solid; $[\alpha]_{\mathrm{D}}^{27}+47.8\left(c 0.19, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max } \mathrm{nm}(\Delta \varepsilon) 210(-7), 240(+7) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\mathrm{log}$ ع) 241 (4.06), 227 (3.83), 220 (3.82), 205 (3.80) nm; IR (KBr) $\nu_{\text {max }}$ 2937, 1740, 1664, $1235 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 3; positive ESIMS $m / z 495$ (100) $[\mathrm{M}+\mathrm{Na}]^{+}$; positive HRESIMS m / z $495.1635[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{9} \mathrm{Na}, 495.1631$).
Ananolignan C (3): white solid; $[\alpha]_{\mathrm{D}}^{27}-35.5\left(c 0.17, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }} \mathrm{nm}(\Delta \varepsilon) 220(+22), 254(-18) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}$ $(\log \varepsilon) 241$ (3.99), 222 (3.68), 210 (3.67), 205 (3.66), 198 (3.66) nm; IR (KBr) $\nu_{\text {max }} 3442,2932,1621,1462 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 3; positive ESIMS $m / z 455(40)[\mathrm{M}+\mathrm{Na}]^{+}$; positive HRESIMS $m / z 455.1683[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{Na}$, 455.1681).

Ananolignan D (4): white solid; $[\alpha]_{\mathrm{D}}^{27}-26.6\left(c \mathrm{c} .20, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }} \mathrm{nm}(\Delta \varepsilon) 220(+16), 254(-15) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}$ $(\log \varepsilon) 241(4.08), 224(3.73), 214(3.71) \mathrm{nm}$; IR (KBr) $\nu_{\max } 3442$, 2940, 1741, 1622, 1464, $1236 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 3; positive ESIMS $m / z 497(65)[\mathrm{M}+\mathrm{Na}]^{+}$; positive HRESIMS $m / z 497.1772[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{9} \mathrm{Na}, 497.1787$).

Ananolignan $E(5)$: white solid; $[\alpha]_{D}^{26}+58.5\left(c 0.22, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }} \mathrm{nm}(\Delta \varepsilon) 225(+40), 254(-25) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}$ ($\log \varepsilon$) 242 (3.95), 226 (3.51), 204 (3.58), 192 (3.58) nm; IR (KBr) $v_{\max } 3448,2925,1732,1463 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 3; positive ESIMS $m / z 513[\mathrm{M}+\mathrm{K}]^{+}$; positive HRESIMS m / z $513.1520[\mathrm{M}+\mathrm{K}]^{+}$(calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{9} \mathrm{~K}, 513.1526$).

Ananolignan $F(6)$: white solid; $[\alpha]_{\mathrm{D}}^{29}+74.3\left(c 0.21, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }} \mathrm{nm}(\Delta \varepsilon) 237(+7), 254(-15) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log$ ع) 241 (4.03), 226 (3.55), 199 (3.66) nm; IR (KBr) $\nu_{\text {max }}$ 2935, 1741, 1622, $1232 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 3; positive ESIMS $m / z 539$ (100) $[\mathrm{M}+\mathrm{Na}]^{+}$; positive HRESIMS $m / z 539.1887$ $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{10} \mathrm{Na}$, 539.1893).
Ananolignan $G(7)$: white solid; $[\alpha]_{D}^{27}+76.1\left(c 0.17, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }} \mathrm{nm}(\Delta \varepsilon) 225(+30), 254(-12) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}$ $(\log \varepsilon) 241$ (4.00), 231 (3.68), 204 (3.65), 199 (3.65) nm; IR (KBr) $\nu_{\text {max }}$ 2940, 1732, 1735, $1237 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 3; positive ESIMS $m / z 553(100)[\mathrm{M}+\mathrm{Na}]^{+}$; positive HRESIMS $m / z 553.2060[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{10} \mathrm{Na}, 553.2049$).
Ananolignan $\mathrm{H}(\boldsymbol{8})$: white solid; $[\alpha]_{\mathrm{D}}^{27}+90.5\left(c 0.18, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }} \mathrm{nm}(\Delta \varepsilon) 225(+31), 254(-12) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}$ $(\log \varepsilon) 241(4.05), 199(3.67), 193(3.68) \mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) \nu_{\max } 2971$, 2939, 1731, $1238 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 2 and 4; positive ESIMS $m / z 567(50)[\mathrm{M}+\mathrm{Na}]^{+}$; positive HRESIMS m / z $567.2201[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{10} \mathrm{Na}, 567.2206$).
Ananolignan I (9): white solid; $[\alpha]_{\mathrm{D}}^{28}+57.3\left(c 0.16, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }} \mathrm{nm}(\Delta \varepsilon) 225(+17), 254(-8) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log$ ع) 241 (4.01), 194 (3.67), $192(3.68) \mathrm{nm}$; IR (KBr) $\nu_{\text {max }} 2967,2939$, 1733, $1237 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 2 and 4 ; positive ESIMS $m / z 567(80)[\mathrm{M}+\mathrm{Na}]^{+}$; positive HRESIMS $m / z 567.2221$ $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{10} \mathrm{Na}, 567.2206$).
Ananolignan J (10): white solid; $[\alpha]_{\mathrm{D}}^{27}+103.3\left(c 0.19, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }} \mathrm{nm}(\Delta \varepsilon) 225(+8), 254(-3) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log$ ع) 241 (3.97), 232 (3.64), 209 (3.60), 196 (3.61) nm; IR (KBr) $v_{\text {max }}$ 2969, 2938, 1731, $1237 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 2 and 4; positive ESIMS $m / z 581(100)[\mathrm{M}+\mathrm{Na}]^{+}$; positive HRESIMS m / z $581.2354[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{10} \mathrm{Na}, 581.2362$).
Ananolignan $\mathrm{K}(\mathbf{1 1})$: white solid; $[\alpha]_{\mathrm{D}}^{27}+1.6\left(c 0.40, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }} \mathrm{nm}(\Delta \varepsilon) 225(+21), 248(-20) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}$ $(\log \varepsilon) 241$ (3.95), 224 (3.59), 218 (3.58), 196 (3.59) nm; IR (KBr) $\nu_{\max }$ 2926, 1719, $1249 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 2 and 4; positive ESIMS $m / z 601(100)[\mathrm{M}+\mathrm{Na}]^{+}$; positive HRESIMS m / z $601.2046[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{10} \mathrm{Na}, 601.2049\right)$.
Ananolignan L(12): white solid; $[\alpha]_{\mathrm{D}}^{29}-22.6\left(c 0.19, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }} \mathrm{nm}(\Delta \varepsilon) 195(+80), 248(-38) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}$ $(\log \varepsilon) 241(4.01), 202(3.61), 195(3.63) \mathrm{nm}$; IR (KBr) $\nu_{\max } 2935$, 1738, 1704, $1251 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 2 and 4; positive ESIMS $m / z 579(100)[\mathrm{M}+\mathrm{Na}]^{+}$; positive HRESIMS m / z $579.2221[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{10} \mathrm{Na}, 579.2206$).

Ananolignan $\mathrm{M}(13)$: white solid; $[\alpha]_{\mathrm{D}}^{27}+77.8\left(c 0.16, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }} \mathrm{nm}(\Delta \varepsilon) 230(+11), 250(-5) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log$ ع) 241 (4.10), 222 (3.59), $202(3.68), 194(3.70) \mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) v_{\text {max }}$ 2970, 2943, 1733, 1710, $1103 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 2 and 4; positive ESIMS $m / z 607(100)[\mathrm{M}+\mathrm{Na}]^{+}$; positive HRESIMS $\mathrm{m} / \mathrm{z} 607.2526[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{10} \mathrm{Na}, 607.2519$).
Ananolignan $N(14)$: white solid; $[\alpha]_{\mathrm{D}}^{27}+64.8\left(c 0.21, \mathrm{CHCl}_{3}\right)$; CD $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }} \mathrm{nm}(\Delta \varepsilon) 225(+35), 250(-17) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}$ $(\log \varepsilon) 241(4.09), 210(3.71), 198(3.71) \mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) \nu_{\max } 2965$, 2938, 1735, 1712, $1463 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 2 and 4; positive ESIMS $m / z 607(100)[\mathrm{M}+\mathrm{Na}]^{+}$; positive HRESIMS m / z $607.2522[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{10} \mathrm{Na}, 607.2519$).

Neurodegenerative Activity Assay. SH-SY5Y neuroblastoma cells were obtained from ATCC (American Type Culture Collection) and maintained at $37{ }^{\circ} \mathrm{C}$ in a humidified atmosphere containing 5% CO_{2}. Cells were seeded into 96 -well plates (Greiner) at a density of $5 \times$ 10^{4} cells per mL in DMEM/F12 (Gibco), supplemented with 10% heatinactivated bovine calf serum, 100 units $/ \mathrm{mL}$ penicillin, and $100 \mathrm{mg} / \mathrm{mL}$ streptomycin. All experiments were carried out 24 h after cells were seeded. Appropriate concentrations of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ were prepared in deionized water on the day of application to cultures. The SH-SY5Y cells were preincubated with different compounds 2 h before
$\mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{mM})$ was added, and the assay for cell viability was performed 24 h after $\mathrm{H}_{2} \mathrm{O}_{2}$ was added. Cell survival was evaluated by reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Sigma). ${ }^{31}$ The values of cell survival were normalized against the value for the control group, which was set to 100%. Data were evaluated for statistical significance with one-way ANOVA followed by the LSD test by using a computerized statistical package. Differences were considered significant at $p<0.05$.

■ ASSOCIATED CONTENT

(S) Supporting Information. NMR spectra of new compounds $\mathbf{1 - 1 4}$. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*Tel: (86) 871-5223251. Fax: (86) 871-5216343. E-mail: pujianxin@ mail.kib.ac.cn or hdsun@mail.kib.ac.cn.

ACKNOWLEDGMENT

This work was supported financially by the NSFC (No. 30830115 to H.-D.S. and 20902093 to J.-X.P.), the Science and Technology Program of Yunan Province (2008GA031), the Major State Basic Research Development Program of China (Nos. 2009CB522300 and 200940900), the Western Doctoral Foundation of Chinese Academy of Sciences (J.-X.P.), the CAS action-plan for West Development (KZCX2-XB2-15), and the National Science \& Technology Major Project "Key New Drug Creation and Manufacturing Program of China" (Nos. 2009ZX09301-001 and -063).

- REFERENCES

(1) Gao, X. M.; Pu, J. X.; Huang, S. X.; Yang, L. M.; Huang, H.; Xiao, W. L.; Zheng, Y. T.; Sun, H. D. J. Nat. Prod. 2008, 71, 558-563.
(2) Shen, Y. C.; Lin, Y. C.; Cheng, Y. B.; Chiang, M. Y.; Liou, S. S.; Khalil, A. T. Phytochemistry 2009, 70, 114-120.
(3) Ookawa, N.; Ikeya, Y.; Sugama, K.; Taguchi, H.; Maruno, M. Phytochemistry 1995, 39, 1187-1191.
(4) Liu, J. S.; Li, L. Phytochemistry 1995, 38, 241-245.
(5) Chen, D. F.; Zhang, S. X.; Kozuka, M.; Sun, Q. Z.; Feng, J.; Wang, Q.; Mukainaka, T.; Nobukuni, Y.; Tokuda, H.; Nishino, H.; Wang, H. K.; Morris-Natschke, S. L.; Lee, K. H. J. Nat. Prod. 2002, 65, 1242-1245.
(6) Chen, D. F.; Zhang, S. X.; Chen, K.; Zhou, B. N.; Wang, P.; Cosentino, L. M.; Lee, K. H. J. Nat. Prod. 1996, 59, 1066-1068.
(7) Chen, D. F.; Zhang, S. X.; Xie, L.; Xie, J. X.; Chen, K.; Kashiwada, Y.; Zhou, B. N.; Wang, P.; Cosentino, L. M.; Lee, K. H. Bioorg. Med. Chem. 1997, 5, 1715-1723.
(8) Kuo, Y. H.; Huang, H. C.; Kuo, L. M. Y.; Chen, C. F.J. Org. Chem. 1999, 64, 7023-7027.
(9) Liu, Y. H. Flora of China; Science Press: Shanghai, 1996; Vol. 30, issue $1, \mathrm{p} 234$.
(10) Chen, Y. G.; Hai, L. N.; Liao, X. R.; Qin, G. W.; Xie, Y. Y.; Halaweish, F. J. Nat. Prod. 2004, 67, 875-877.
(11) Chen, Y. G.; Xie, Y. Y.; Cheng, K. F.; Cheung, K. K.; Qin, G. W. Phytochemistry 2001, 58, 1277-1280.
(12) Chen, Y. G.; Song, X. P.; Hai, L. N.; A, F.; Bi, Y. M.; Liao, X. R. Pol. J. Chem. 2006, 80, 1677-1681.
(13) Chen, Y. G.; Song, X. P.; Hai, L. N.; Lv, Y. P.; A, F.; Halaweish, F.; Liao, X. R. Pharmazie 2006, 61, 891-892.
(14) Zou, C.; Pu, X. Y.; Zhou, J. Acta Bot. Yunnan. 1993, 15, 196-200.
(15) Yang, J. H.; Pu, J. X.; Wen, J.; Li, X. N.; He, F.; Xue, Y. B.; Wang, Y. Y.; Li, Y.; Xiao, W. L.; Sun, H. D. J. Nat. Prod. 2010, 73, 12-16.
(16) Yang, J. H.; Wen, J.; Du, X.; Li, X. N.; Wang, Y. Y.; Li, Y.; Xiao, W. L.; Pu, J. X.; Sun, H. D. Tetrahedron 2010, 66, 8880-8887.
(17) Mervir, M.; Ghera, E. J. Am. Chem. Soc. 1977, 99, 7673-7678.
(18) Chen, D. F.; Xu, G. J.; Yang, X. W.; Hattori, M.; Tezuka, Y.; Kikuchi, T.; Namba, T. Phytochemistry 1992, 31, 629-632.
(19) Chen, Y. G.; Xie, Y. Y.; Cheng, K. F.; Cheung, K. K.; Qin, G. W. Phytochemistry 2001, 58, 1277-1280.
(20) Ikeya, Y.; Ookawa, N.; Taguchi, H.; Yosioka, I. Chem. Pharm. Bull. 1982, 30, 3202-3206.
(21) Yang, G. Y.; Li, Y. K.; Wang, R. R.; Li, X. N.; Xiao, W. L.; Yang, L. M.; Pu, J. X.; Zheng, Y. T.; Sun, H. D. J. Nat. Prod. 2010, 73, 915-919.
(22) Shen, Y. C.; Cheng, Y. B.; Lan, T. W.; Liaw, C. C.; Liou, S. S.; Kuo, Y. H.; Khalil, A. T. J. Nat. Prod. 2007, 70, 1139-1145.
(23) Chen, D. F.; Xu, G. J.; Yang, X. W.; Hattori, M.; Tezuka, Y.; Kikuchi, T.; Namba, T. Phytochemistry 1992, 31, 629-632.
(24) Ikeya, Y.; Taguchi, H.; Yosioka, I.; Kobayashi, H. Chem. Pharm. Bull. 1979, 27, 1383-1394.
(25) Liu, J. S.; Li, L. Phytochemistry 1995, 38, 1009-1011.
(26) Li, X. N.; Pu, J. X.; Du, X.; Yang, L. M.; An, H. M.; Lei, C.; He, F.; Luo, X.; Zheng, Y. T.; Lu, Y.; Xiao, W. L.; Sun, H. D. J. Nat. Prod. 2009, 72, 1133-1141.
(27) Entzeroth, M.; Moore, R. E.; Niemczura, W. P.; Patterson, G. M. L.; Shoolery, J. N. J. Org. Chem. 1986, 51, 5307-5310.
(28) Xiao, X. Q.; Yang, J. W.; Tang, X. C. Neurosci. Lett. 1999, 275, 73-76.
(29) Chetsawang, B.; Putthaprasart, C.; Phansuwan-Pujito, P.; Govitrapong, P. J. Pineal Res. 2006, 41, 116-123.
(30) Zhang, M.; Shoeb, M.; Goswamy, J.; Liu, P.; Xiao, T. L.; Hogan, D.; Campbell, G. A.; Ansari, N. H. J. Neurosci. Res. 2010, 88, 686-694.
(31) Hansen, M. B.; Nielsen, S. E.; Berg, K. J. Immunol. Methods 1989, 119, 203-210.

[^0]: Received: December 19, 2010
 Published: March 07, 2011

[^1]: ${ }^{a}$ Recorded at $400 \mathrm{MHz} .{ }^{b}$ Recorded at 500 MHz .

